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Microsystems for biology

▪ Integrated systems for performing biological tests
▪ Example: microarrays
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Microsystems for biology

▪ Integrated systems for performing biological tests
▪ Example: nanopores
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Microsystems for biology

▪ Integrated systems for performing biological tests
▪ Example: nanopores

Questions:
What is the current magnitude?
Electric field around the nanopore?



Counting cells

Coulter counter (Wallace and Joseph Coulter, 1946)
 cells passing  through a small hole cause a drop in ionic current through the hole

Blood test results





Microfluidics



Topics for this chapter

▪ Fluid transport

▪ Heat transport



Characteristics of ideal fluids

▪ Four assumptions related to ideal fluids:

- steady flow (laminar flow) – the velocity of the 
moving fluid is constant in time (both in magnitude 
and in direction); the opposite is turbulent flow

- incompressible flow – the fluid has a constant and 
uniform density

- nonviscous flow – objects moving through the fluid 
do not experience any resistance

- irrotational flow - ∇ × Ԧ𝑣 = 0 where Ԧ𝑣 is the fluid 
velocity

laminar flow

turbulent flow

Rising smoke

Fluid flowing past a cylinder



Other extreme of viscosity

▪ University of Queensland Pitch drop experiment – bitumen, 2×1011 times more viscous than water 

http://smp.uq.edu.au/content/pitch-drop-experiment

Date Event Duration (Months)

1927   Experiment set up

1930 The stem was cut

December 1938 1st drop fell 96-107

February 1947 2nd drop fell 99

April 1954 3rd drop fell 86

May 1962 4th drop fell 97

August 1970 5th drop fell 99

April 1979 6th drop fell 104

July 1988 7th drop fell 111

28 November 2000 8th drop fell 148

http://gizmodo.com/a-69-year-old-experiment-finally-
worked-for-the-first-t-827373065

http://smp.uq.edu.au/content/pitch-drop-experiment
http://gizmodo.com/a-69-year-old-experiment-finally-worked-for-the-first-t-827373065
http://gizmodo.com/a-69-year-old-experiment-finally-worked-for-the-first-t-827373065


Continuity equations: Steady flow of an ideal fluid

▪ Let us consider fluid flowing from left to right 
through a tube segment of length 𝐿

▪ The fluid has speeds 𝑣1 at the left end and 𝑣2 at 
the right end

▪ In a time interval ∆𝑡 a volume ∆𝑉 of fluid enters 
at left end

▪ Because the fluid is incompressible, the same 
volume ∆𝑉 must emerge from the right 
segment

▪ If we consider a tube of uniform cross-
sectional area 𝐴, the volume ∆𝑉 is equal to:

Δ𝑉 = 𝐴Δ𝑥 = 𝐴𝑣Δ𝑡

▪ Applying this to the tube with varying diameter, 
we get:

Δ𝑉 = 𝐴1𝑣1Δ𝑡 = 𝐴2𝑣2Δ𝑡

𝐴1𝑣1 = 𝐴2𝑣2 equation of continuity𝐴𝑣 = 𝑐𝑜𝑛𝑠𝑡.



Fluid dynamics in general
▪ In the most general case, fluid dynamics is described by a set of differential equations known 

as Navier – Stokes equations

where 𝑢 is the flow velocity and 𝑄 represents sources and sinks

▪ These equations are different formulations of the well-known principles of the conservation 
of mass, momentum and energy

▪ They are connected through the Reynolds transport theorem which states that the changes 
of some property 𝐿 defined over a volume Ω, must be equal to what is lost (or gained) through 
the boundaries of the volume (surface 𝜕Ω) plus what is created/consumed by sources and 
sinks inside the volume Ω.

𝑑

𝑑𝑡
න

Ω

𝐿𝑑𝑉 = − න
𝜕Ω

𝐿𝑢 ⋅ ො𝑛 𝑑𝐴 − න
Ω

𝑄𝑑𝑉

▪ This theorem is expressed by the following equation:

▪ We can rewrite the second (surface) integral using the Gauss’ theorem:

න
𝜕Ω

𝐿𝑢 ⋅ ො𝑛 𝑑𝐴 = න
Ω

∇ ⋅ 𝐿𝑢 𝑑𝑉



Fluid dynamics in general

▪ By combining all the integrals, we get:

This must be zero for any control volume; this is true only when the integrand is zero, so 
that:

න
Ω

𝜕𝐿

𝜕𝑡
+ ∇ ⋅ (𝐿𝑢) + 𝑄 𝑑𝑉 = 0

𝜕𝐿

𝜕𝑡
+ ∇ ⋅ 𝐿𝑢 + 𝑄 = 0

▪ We can first apply this general equation to mass. In this case 𝑄 = 0 (there are no sources or 
sinks for mass) and putting in density for 𝐿 , we get:

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝑢 = 0

this is called the mass continuity equation or simply continuity equation



Fluid dynamics in general

▪ For the case of momentum, things start easily – put momentum written as 𝜌𝑢 for 𝐿:

Things however get very complicated because the quantity 𝑢𝑢 is a dyad, a rank 2 
tensor and to make things even worse, we would now have to calculate its divergence

𝜕

𝜕𝑡
𝜌𝑢 + ∇ ⋅ 𝜌𝑢𝑢 + 𝑄 = 𝑓

▪ In this picture, the source or sink of momentum is a body force 𝑄 = 𝑓 (force divided by 
volume)

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 𝑢 ⋅ ∇ 𝑢 + ∇𝑝 − 𝜂∇2𝑢 − 𝜆 + 𝜂 ∇ ∇ ⋅ 𝑢 = Ԧ𝑓

▪ The end result of that would be this Navier-Stokes equation:

where 
   𝑝 is the pressure in the fluid 
  𝜂 the dynamic fluid viscosity
  𝜆 is a second viscosity coefficient (related to the compressibility of the fluid)
 This equation is sometimes written with ν = 𝜂/𝜌 (kinematic viscosity)



Incompressible fluids

▪ In order to solve these equations, simplifications have to be made – first one is to assume 
that the fluid is incompressible

and

▪ This means that the density 𝜌 is constant in space as well as in time

▪ Navier-Stokes equations

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝑢 = 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 𝑢 ⋅ ∇ 𝑢 + ∇𝑝 − 𝜂∇2𝑢 − 𝜆 + 𝜂 ∇ ∇ ⋅ 𝑢 = Ԧ𝑓

then reduce to

∇ ⋅ 𝑢 = 0

and

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1

𝜌
∇𝑝 + 𝜂∇2𝑢

(2)

(1)



Incompressible fluids

▪ In order to solve these equations simplifications have to be made – first one is to assume 
that the fluid is incompressible

• This means that the density 𝜌 is constant in space as well as in time

• Navier-Stokes equation (1)

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝑢

= 0

𝜌 constant in time

𝜌∇ ⋅ 𝑢 = 0

∇ ⋅ 𝑢 = 0

 𝜌 constant in space



Incompressible fluids

▪ In order to solve these equations simplifications have to be made – first one is to assume 
that the fluid is incompressible

▪ This means that the density 𝜌 is constant in space as well as in time

▪ Navier-Stokes equation (2)

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 𝑢 ⋅ ∇ 𝑢 + ∇𝑝 − 𝜂∇2𝑢 − 𝜆 + 𝜂 ∇ ∇ ⋅ 𝑢 = Ԧ𝑓

viscous terminertial term

= 0 because ∇ ⋅ 𝑢 = 0 (previous eq)

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = − ∇𝑝 + 𝜂∇2𝑢 + Ԧ𝑓

usually 0 or 
grouped with 𝑝 

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1

𝜌
∇𝑝 + 𝜂∇2𝑢



Incompressible fluids with no viscosity

▪ A further assumption is that the fluid has no viscosity (𝜂 = 0)

These are also called the incompressible inviscid Navier-Stokes equations

▪ Navier-Stokes equations are then reduced to

∇ ⋅ 𝑢 = 0

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1

𝜌
∇𝑝 + 𝜂∇2𝑢

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1

𝜌
∇𝑝



Incompressible fluids: what and when can we neglect?

▪ Let us step back and consider again the incompressible Navier-Stokes equations with 
viscosity:

for a flow with some characteristic velocity 𝑈, in a spatial region with characteristic 
length ℓ.

∇ ⋅ 𝑢 = 0

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1

𝜌
∇𝑝 + 𝜂∇2𝑢

𝑢∗ =
𝑢

𝑈 Ԧ𝑥∗ =
Ԧ𝑥

ℓ
Ԧ𝑦∗ =

Ԧ𝑦

ℓ
Ԧ𝑧∗ =

Ԧ𝑧

ℓ
𝑡∗ =

𝑈𝑡

ℓ
𝑝∗ =

ℓ

𝜂𝑈
𝑝

▪ We can look at the effects of scale by introducing the following quantities:

▪ Substituting these into Navier-Stokes equations results in:

∇ ⋅ 𝑢∗ = 0

𝜕𝑢∗

𝜕𝑡∗ + 𝑢∗ ⋅ ∇ 𝑢∗ =
1

𝑅𝑒
−∇𝑝∗ + ∇2𝑢∗ 𝑅𝑒 =

𝜌𝑈ℓ

𝜂
with Reynolds number



Incompressible fluids: what and when can we neglect?

▪ At this point, we can drop the stars and write:

∇ ⋅ 𝑢 = 0

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 =

1

𝑅𝑒
−∇𝑝 + ∇2𝑢

▪ 𝑅𝑒 is a dimensionless parameter called the Reynolds number and is given by:

𝑅𝑒 =
𝜌𝑈ℓ

𝜂

▪ Different regimes of behavior of fluid flow are:
𝑅𝑒 ≪ 1 viscous effects dominate over inertial effects
𝑅𝑒 ≈ 1 viscous effects comparable to inertial effects
𝑅𝑒 ≫ 1 inertial effects dominate over viscous effects

▪ Reynolds number sets the smallest scales of turbulent motion (at 𝑅𝑒 between 1000-10000)

▪ This is why you can use scale models of ships and airplanes in tanks and wind tunnels

For water 𝜂 =10-3 Pas at 20 °C;  0.25×10-3 Pas  at 100 °C 

1

𝑅𝑒
−∇𝑝 + ∇2𝑢

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 =

1

𝑅𝑒
−∇𝑝 + ∇2𝑢𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 =

1

𝑅𝑒
−∇𝑝 + ∇2𝑢𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢=



Reynolds number

▪ Reynolds number

𝑅𝑒 =
𝜌𝑈ℓ

𝜂

▪ Can also be thought of as a ratio of inertial to viscous forces (𝐹 = 𝑚𝑎 vs. 𝐹 = 6𝜋𝜂𝑙𝑣)

Michael Phelps
𝑅𝑒 ≈ 104

Guppy Fish
𝑅𝑒 ≈ 102

E. Coli
𝑅𝑒 ≈ 10−4



Reynolds number – fluid velocity streamlines

𝑅𝑒 ≈ 10−2 
𝑅𝑒 ≈ 20

𝑅𝑒 ≈ 100 𝑅𝑒 ≈ 104

𝑅𝑒 ≈ 106



𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 =

1

𝑅𝑒
−∇𝑝 + ∇2𝑢

Incompressible fluids

▪ In the case of microfluidics, the incompressible Navier-Stokes equations are often replaced 
with their low Reynolds number limits

which results in equations:

▪ To do this, we take the limit 𝑅𝑒 → 0 of

∇ ⋅ 𝑢 = 0

∇𝑝 = ∇2𝑢

▪ Some typical values:
sperm cells  10-2

blood flow in brain  102

blood flow in aorta  103

swimming  104 
blue whale  3108

large ship  5 109

onset of turbulent flow

𝑅𝑒⋅
𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −∇𝑝 + ∇2𝑢

𝑅𝑒 → 0

∇𝑝 = ∇2𝑢so



Incompressible fluids – boundary conditions

▪ As with all other continuum theories, Navier Stokes equations require boundary and initial 
conditions

▪ For initial conditions, we have to specify the velocity and pressure field in the fluid at time 
𝑡 = 0

▪ For the solid – fluid interface we have two types of boundary conditions:
1. No-penetration – the fluid is not moving into the wall

- this implies that the flow in directions normal to the wall must be zero at the wall:

ቚ𝑢 ⋅ ො𝑛
interface

= 0

2. No-slip – based on the experimental observation that at the interface between a fluid 
and solid, the fluid is not moving in the tangential direction. This is stated as:

ቚ𝑢 × ො𝑛
interface

= 0

Taken together, these two can be simply written as: ቚ𝑢
interface

= 0



Boundary conditions

▪ The no-slip boundary condition is based on experimental observation

where 𝜆 is the molecular mean free path and ℓ is a characteristic length of the system 
under consideration

▪ This condition does not always hold – fluids such as rarified gasses can slip along a solid 
surface

▪ To describe this behavior we will introduce a parameter called the Knudsen number 𝐾𝑛 :

𝐾𝑛 =
𝜆

ℓ

▪ The molecular mean free path is the average distance traveled by a molecule between 
collisions

▪ In rarified gases the mean free path becomes large, comparable to the system size, so 
Knudsen number approaches 1

▪ In micro and nanofluidics, the Knudsen number becomes large because the system size 
decreases and becomes comparable with the mean free path



Boundary conditions

▪ As a rule of thumb, we can distinguish between the following regimes of fluid dynamics: 

𝐾𝑛 < 10−4  Navier-Stokes equations, no-slip boundary condition applies

10−4 < 𝐾𝑛 < 0.1 Navier-Stokes equations, no-slip boundary does not apply

0.1 < 𝐾𝑛 < 10  transitional flow regime

𝐾𝑛 > 10  free molecular flow

▪ In the cases when Navier-Stokes equations no longer hold (𝐾𝑛 > 0.1) we must use 
approaches based on molecular dynamics



Molecular dynamics

▪ Molecular dynamics is a type of computer simulation 
based on calculating the interaction force between atoms 
and molecules 

Give atoms initial 
positions, chose short t

Calculate Forces and 
accelerations a = F/m

Move atoms to new 
positions

Move time forward

t = t + t

Repeat

▪ The technique begins with a collection of 
molecules distributed in space, with each 
molecule having a random velocity

▪ Velocities are then integrated forward in time to 
arrive at new molecular positions

▪ Intermolecular forces at the new time step are 
computed again and used to evolve the system 
forward in time



Molecular dynamics

▪ Interaction between molecules is usually described using the Lennard – Jones potential

repulsive

𝑉𝑖𝑗(𝑟) = 4𝜀 𝑐𝑖𝑗

𝜎

𝑟

12

− 𝑑
𝜎

𝑟

6

attractive

Interaction energy for two argon atoms



Molecular dynamics
▪ Breakup of a propane jet in nitrogen gas
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Heat transfer

▪ Heat can be transferred from one place or body to another in three ways:
- Conduction
- Convection
- Radiation

▪ These result in different boundary conditions



Heat transfer - conduction

▪ Consider an object with a cross-sectional area 
𝐴 and thickness 𝐿, with faces maintained at 
temperatures 𝑇𝐻  and 𝑇𝐶  

where 𝑘 is the thermal conductivity, specific to a given material

▪ Δ𝑄 is the energy (heat) transferred through the slab, 
from the hot face to the cold face in time Δ𝑡 

▪ The conduction rate 𝑃𝑐𝑜𝑛𝑑  is:

𝑃𝑐𝑜𝑛𝑑 =
Δ𝑄

Δ𝑡
= 𝑘𝐴

𝑇𝐻 − 𝑇𝐶

𝐿



Thermal conductivities

Substance Thermal conductivity 𝑘 
(Jm-1s-1 °C-1) at room temperature

Silver 420

Copper 380

Aluminum 200

Steel 40

Glass 0.84

Water 0.56

Wood 0.1

Air 0.023



Heat transfer - conduction

▪ We will now consider heat conduction through an 
object composed of two materials, with different 
thicknesses and different thermal conductivities 

▪ If the temperatures do not change with time, the 
conduction rates through the two materials must 
be equal

▪ If 𝑇𝑋 is the temperature of the interface between the 
two materials, we can write:

𝑃𝑐𝑜𝑛𝑑 =
𝑘2𝐴(𝑇𝐻 − 𝑇𝑋)

𝐿2
=

𝑘1𝐴 𝑇𝑋 − 𝑇𝐶

𝐿1

▪ After a bit of algebra we get:

𝑃𝑐𝑜𝑛𝑑 =
𝐴(𝑇𝐻 − 𝑇𝐶)

𝐿1
𝑘1

+
𝐿2
𝑘2

𝐿

𝑘
is additive 𝑃𝑐𝑜𝑛𝑑 = 𝑘𝐴

𝑇𝐻 − 𝑇𝐶

𝐿

For a single thermal link we had:



Heat transfer - conduction

▪ In the general case, we divide the object into infinitesimally small segments. We can then 
rewrite the equation

𝑃𝑐𝑜𝑛𝑑 =
Δ𝑄

Δ𝑡
= 𝑘𝐴

𝑇𝐻 − 𝑇𝐶

𝐿

in the following form (Fourier’s law):

1

𝐴

𝑑𝑄

𝑑𝑡
= Ԧ𝑞 = −𝑘∇𝑇 where Ԧ𝑞 is the heat flux through surface with area 𝐴

▪ For a given object with volume 𝑉, the conservation of energy says that the flux of energy 
(heat) through the surface is equal to the change in thermal energy.

▪ Change in energy is equal to:

𝑑𝐸

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
න 𝜌𝑐𝑝𝑇𝑑𝑉

▪ Thermal energy density is given by 𝜌𝑐𝑝𝑇 where 𝜌 denotes the density of the material, 𝑐𝑝 its 
specific heat and 𝑇 its temperature



Heat transfer - conduction

▪ Change in energy is equal to:

▪ From energy conservation, this change in energy is equal to the integrated heat flux:

We can use Gauss’ theorem on the right hand side:

This way we get from the expression for energy conservation:

𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
න 𝜌𝑐𝑝𝑇𝑑𝑉 = − න

𝑆

Ԧ𝑞 ⋅ ො𝑛𝑑𝑆

𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
න 𝜌𝑐𝑝𝑇𝑑𝑉

න
𝑆

Ԧ𝑞 ⋅ ො𝑛𝑑𝑆 = න
𝑉

(∇ ⋅ Ԧ𝑞)𝑑𝑉

𝑑

𝑑𝑡
න 𝜌𝑐𝑝𝑇𝑑𝑉 = − න

𝑉

(∇ ⋅ Ԧ𝑞)𝑑𝑉

න 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ⋅ Ԧ𝑞 𝑑𝑉 = 0

as the volume is arbitrary, we get:



Heat transfer - conduction

▪ As the volume of integration is arbitrary, we finally get:

This is valid for an anisotropic inhomogeneous medium where 𝑘 could be a tensor (just like in 
elasticity) while 𝜌, 𝑐𝑝, 𝑘 are in general functions of position

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ⋅ Ԧ𝑞 = 0

▪ By inserting Fourier’s law Ԧ𝑞 = −𝑘∇𝑇, we get:

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= ∇ ⋅ (𝑘∇𝑇)

▪ In a homogeneous and isotropic material we can simplify this equation to:

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝑐𝑝
∇2𝑇



Heat transfer – convection

▪ Convection – energy transfer which occurs when a fluid (air, water etc.) comes in contact 
with an object whose temperature is higher than that of the fluid

 Heat is transported via the motion of the fluid
 This motion can be forced (forced convection) or natural (due to heat expansion of the fluid)

Hotter water

Colder water

Convective flows in a house



Heat transfer – radiation

where 𝜎 = 5.67 · 10−8𝑊/𝑚2𝐾4 is the Stefan-Boltzmann constant

▪ Radiation – heat exchange via electromagnetic waves, no medium is required

▪ The rate 𝑃𝑟𝑎𝑑  at which an object emits energy via electromagnetic radiation depends on the 
object’s surface area 𝐴  and the temperature 𝑇 of that area (in Kelvins) and is given by:

𝑃𝑟𝑎𝑑 = 𝜎𝜀𝐴𝑇4

𝜀 is the emissivity of the object and has a value between 0 (shiny) and 1 (black matte)

▪ The rate 𝑃𝑎𝑏𝑠 at which an object absorbs energy via thermal 
radiation from its environment is:

𝑃𝑎𝑏𝑠 = 𝜎𝜀𝐴𝑇𝑒𝑛𝑣
4

▪ Because an object can radiate energy to the environment and 
also absorb it, the net rate of energy exchange due to radiation 
(from the point of view of the object) is going to be:

𝑃𝑛𝑒𝑡 = 𝑃𝑎𝑏𝑠 − 𝑃𝑟𝑎𝑑 = 𝜎𝜀𝐴 𝑇𝑒𝑛𝑣
4 − 𝑇4

Thermal scan of hands



Heat transfer – boundary conditions

▪ In order to complete the description of problems involving heat transfer, we must specify 
initial and boundary conditions

𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧)

▪ For initial conditions, we must simply specify the temperature of the body at every point in 
space at time 𝑡 = 0

1. Controlled temperature
 This boundary condition (Dirichlet type) applies when a device has zones with a constant 

temperature or if a large solid mass is in contact with the device. This large mass is then 
supposed to remain at a constant temperature

ቚ𝑇
𝑆

= 𝑇𝐴

ቚ𝑘∇𝑇 ⋅ ො𝑛
𝑆

= 𝑘
𝜕𝑇

𝜕𝑛
= 0

2. Symmetry plane
 This boundary condition (von Neumann type) applies when the device geometry has one or 

more planes of symmetry and when the heat sources are implemented with the same 
symmetry i.e. no heat passes through these places. We can then impose on the symmetry 
planes:
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where ℎ is the coefficient of convective exchange of the boundary. This value depends on 
the nature of the fluid in the vicinity of the wall

ቚ𝑘∇𝑇 ⋅ ො𝑛
𝑆

= 𝑘
𝜕𝑇

𝜕𝑛
= 0

3. Insulated wall
 This boundary condition (von Neumann type) applies for materials with low thermal 

conductivity. The heat flow through such materials is negligible. We then have:

4. Heat transfer by convection
 Here, the body is in contact with a fluid occupying a large volume. This could be a huge 

liquid reservoir or the atmosphere. This fluid is assumed to have a temperature 𝑇𝐴. The 
corresponding boundary condition is then:

ቤ𝑘
𝜕𝑇

𝜕𝑛
𝑆

= ቚ−ℎ(𝑇 − 𝑇𝐴)
𝑆
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5. Heat transfer by radiation
 Objects emit electromagnetic radiation which is absorbed by surrounding objects.
 This boundary condition is expressed using:

ቤ𝑘
𝜕𝑇

𝜕𝑛
𝑆

= ቚ−𝜀𝜎(𝑇4 − 𝑇𝐴
4)

𝑆

If the heat is carried away by a:

solid

fluid (liquid or gas)

there is no medium (vacuum) or the
temperature difference is large

then (on the microscale), we need to consider

conduction

convection

radiation

Which mechanism is most important?
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