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Microsystems for biology

Integrated systems for performing biological tests
Example: microarrays

DNA from a tumor DNA from healthy tissue
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Microsystems for biology

“ Integrated systems for performing biological tests
“ Example: nanopores
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Microsystems for biology

Integrated systems for performing biological tests

Example: nanopores

©

Questions:
What is the current magnitude?

Electric field around the nanopore?



Counting cells

Coulter counter (Wallace and Joseph Coulter, 1946)

cells passing through a small hole cause a drop in ionic current through the hole
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nature
nanotechnology

ARTICLES

PUBLISHED ONLINE: 17 NOVEMBER 2013 | DOI: 10.1038/NNANO.2013.240

Detecting the translocation of DNA through
a nanopore using graphene nanoribbons

F. Traversi', C. Raillon’, S. M. Benameur?, K. Liu', S. Khlybov'!, M. Tosun?, D. Krasnozhon?, A. Kis?
and A. Radenovic™
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Topics for this chapter

Fluid transport

Heat transport



Characteristics of ideal fluids

Four assumptions related to ideal fluids:

- steady flow (laminar flow) — the velocity of the
moving fluid is constant in time (both in magnitude
and in direction); the opposite is turbulent flow

- incompressible flow - the fluid has a constant and

uniform density |
laminar flow

- nonviscous flow — objects moving through the fluid
do not experience any resistance Rising smoke

- irrotational flow - V X ¥ = 0 where v is the fluid
velocity

Fluid flowing past a cylinder



Other extreme of viscosity

University of Queensland Pitch drop experiment — bitumen, 2 X 10"" times more viscous than water

Date Event Duration (Months)

1927 Experimentsetup

1930 The stem was cut

December 1938 1st drop fell 96-107
February 1947 2nd drop fell 99
April 1954 3rd drop fell 86
May 1962 4th drop fell 97
August 1970 5th drop fell 99
April 1979 6th drop fell 104
July 1988 7th drop fell 111
28 November 2000 8th drop fell 148

http://gizmodo.com/a-69-year-old-experiment-finally-
worked-for-the-first-t-827373065

http://smp.uqg.edu.au/content/pitch-drop-experiment
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Continuity equations: Steady flow of an ideal fluid

Let us consider fluid flowing from left to right
through a tube segment of length L

The fluid has speeds v, at the left end and v, at
the right end

In atime interval At a volume AV of fluid enters
at left end

(a) Time t

L >

Because the fluid is incompressible, the same
volume AV must emerge from the right
segment

If we consider a tube of uniform cross-
sectional area A, the volume AV is equal to:

(b) Time t+ At

AV = AAx = AvAt

Applying this to the tube with varying diameter, col—’
we get: | .
: (a) Time ¢t
AV = Allet = szzAt Ir
{ o
|
Aivy = Ay, Av = const. equation of continuity } » |
[ O

(b) Time t+ At



Fluid dynamics in general

In the most general case, fluid dynamics is described by a set of differential equations known
as Navier — Stokes equations

These equations are different formulations of the well-known principles of the conservation
of mass, momentum and energy

They are connected through the Reynolds transport theorem which states that the changes
of some property L defined over a volume (2, must be equal to what is lost (or gained) through
the boundaries of the volume (surface d(1) plus what is created/consumed by sources and
sinks inside the volume ().

This theorem is expressed by the following equation:

d
—f LdV=—f L{Z-ﬁdA—j 0dv
dt Jg 20 Q

We can rewrite the second (surface) integral using the Gauss’ theorem:

j Lﬁ-ﬁdA=j V- (LD)dV
519} Q

where U is the flow velocity and Q represents sources and sinks



Fluid dynamics in general

By combining all the integrals, we get:

oL V-(Lu dv =0
[, [+ wm+ofar-

This must be zero for any control volume; this is true only when the integrand is zero, so
that:

aL+V(L")+ =0
ot w+Q=

We can first apply this general equation to mass. In this case Q = 0 (there are no sources or
sinks for mass) and putting in density for L , we get:

ap+V(‘*)—0
ot pr) =

this is called the mass continuity equation or simply continuity equation



Fluid dynamics in general

For the case of momentum, things start easily — put momentum written as pu for L:
a — ——>
E(PU) +V-(puuw) +Q =1

In this picture, the source or sink of momentum is a body force Q = f (force divided by
volume)

Things however get very complicated because the quantity 1 is a dyad, a rank 2
tensor and to make things even worse, we would now have to calculate its divergence

The end result of that would be this Navier-Stokes equation:

—

ou S
p§+p(ﬁ-V)ﬁ+Vp—nV2ﬁ—(/1+77)V(V-ﬁ) =f

where
p is the pressure in the fluid
n the dynamic fluid viscosity
A is a second viscosity coefficient (related to the compressibility of the fluid)
This equation is sometimes written with v = n/p (kinematic viscosity)



Incompressible fluids

In order to solve these equations, simplifications have to be made —first one is to assume
that the fluid is incompressible

This means that the density p is constant in space as well as in time

Navier-Stokes equations

ap o
E+V-(pu)—0 (1)

and

—

Ju S
por+p- U+ V- @A+mV(V-D) =f (2

then reduce to

V-u=0
and

—

ou

1
Fris (u-Vu = —;(Vp + nV2)



Incompressible fluids

In order to solve these equations simplifications have to be made —first one is to assume
that the fluid is incompressible

This means that the density p is constant in space as well as in time

Navier-Stokes equation (1)

9]
+ V- (pu
ﬁ%/ (pu) p constant in space

=0
p constantin time \

pV -

U
V-u=

=0
0




Incompressible

fluids

In order to solve these equations simplifications have to be made —first one is to assume
that the fluid is incompressible

This means that the density p is constant in space as well as in time

Navier-Stokes equation (

o @
Poc TP

aﬁ+(q
Plar ™\

—

ou
dat

inertial term

2)

-v>ﬁ+vP—nv2ﬂ—<Wf

= 0 because V- u = 0 (previous eq)

: V)ﬁ] = —(Vp + nV4U) +

Ny

1
+ (- V)u = ——(Vp +nV?u)

N\

viscous term

usually O or
grouped with p



Incompressible fluids with no viscosity

A further assumption is that the fluid has no viscosity (n = 0)

Navier-Stokes equations are then reduced to

—

ou

1
= —>=__ 2= - .
5 + (u-V)u p(Vp + nVeu)

—

u
gt +(

—

u

V)

—

1V
u=—-Vp
p

These are also called the incompressible inviscid Navier-Stokes equations




Incompressible fluids: what and when can we neglect?

Let us step back and consider again the incompressible Navier-Stokes equations with
viscosity:

V-u=0

—

ou

1
= . —>=__ 2=
5 + (u-V)u p(Vp + nVeu)

for a flow with some characteristic velocity U, in a spatial region with characteristic
length 4.

We can look at the effects of scale by introducing the following quantities:

Z t*—Ut £
© Ty ~ 7

Substituting these into Navier-Stokes equations results in:

Vi =0

+ @* - VUt = —[-Vp* + V?u*] with Re = bl Reynolds number
ot* Re n




Incompressible fluids: what and when can we neglect?

At this point, we can drop the stars and write:

V-u=0

—

Jou

1
+@-VU=—[-Vp+ VU
5 T W Vu=—[-Vp ]
Re is a dimensionless parameter called the Reynolds humber and is given by:

pU?
Re = T For watern =103 Pa-s at 20 °C; 0.25 X 103 Pa-s at 100 °C

This is why you can use scale models of ships and airplanes in tanks and wind tunnels
Reynolds number sets the smallest scales of turbulent motion (at Re between 1000-10000)

Different regimes of behavior of fluid flow are:

oo
E+(u-v)u7

1
. [—Vp + V4]

Re < 1 viscous effects dominate over inertial effects
Re = 1 viscous effects comparable to inertial effects g—?+ (U-V)u = Rie[—Vp + V21]
Re > 1 inertial effects dominate over viscous effects

- — —
%, (u . V)uz é[fvzw\ﬁi]



Reynolds number

Reynolds number
_pU?
n

Re

Can also be thought of as a ratio of inertial to viscous forces (F = mavs. F = 6mnlv)

Photo by Bryan Chin

Michael Phelps Guppy Fish
Re ~ 10* Re =~ 102




Reynolds number - fluid velocity streamlines




Incompressible fluids

Some typical values:

sperm cells = 1072
blood flow in brain ~ 102

blood flow in aorta=~ 103
onset of turbulent flow

swimming =~ 104
blue whale =~ 3x108

large ship ~5x 109

In the case of microfluidics, the incompressible Navier-Stokes equations are often replaced
with their low Reynolds number limits

—

9 1
To do this, we take the limit Re — 0 of a—? + (@ V)i = o= [~Vp + V2l
e

which results in equations: Re- a_u + (@ -Vl = —Vp + V21
Jt

V=0 x

so Vp=VuU

Vp=V21_L> Re_)o




Incompressible fluids — boundary conditions

As with all other continuum theories, Navier Stokes equations require boundary and initial
conditions

For initial conditions, we have to specify the velocity and pressure field in the fluid at time
t=20

For the solid - fluid interface we have two types of boundary conditions:
1. No-penetration — the fluid is not moving into the wall
- this implies that the flow in directions normal to the wall must be zero at the wall:

. =0
interface

-7l
2. No-slip — based on the experimental observation that at the interface between a fluid
and solid, the fluid is not moving in the tangential direction. This is stated as:
ﬁxﬁL =0
interface

Taken together, these two can be simply written as: u =0

interface



Boundary conditions

The no-slip boundary condition is based on experimental observation

This condition does not always hold - fluids such as rarified gasses can slip along a solid
surface

To describe this behavior we will introduce a parameter called the Knudsen number Kn :

where A is the molecular mean free path and ¢ is a characteristic length of the system
under consideration

The molecular mean free path is the average distance traveled by a molecule between
collisions

In rarified gases the mean free path becomes large, comparable to the system size, so
Knudsen number approaches 1

In micro and nanofluidics, the Knudsen number becomes large because the system size
decreases and becomes comparable with the mean free path



Boundary conditions

As a rule of thumb, we can distinguish between the following regimes of fluid dynamics:

Kn <10™* Navier-Stokes equations, no-slip boundary condition applies
107* < Kn < 0.1 Navier-Stokes equations, no-slip boundary does not apply
0.1 <Kn<10 transitional flow regime

Kn > 10 free molecular flow

In the cases when Navier-Stokes equations no longer hold (Kn > 0.1) we must use
approaches based on molecular dynamics



Molecular dynamics

“ Molecular dynamics is a type of computer simulation
based on calculating the interaction force between atoms
and molecules

= The technique begins with a collection of
molecules distributed in space, with each
molecule having a random velocity

“ Velocities are then integrated forward in time to
arrive at new molecular positions

= Intermolecular forces at the new time step are
computed again and used to evolve the system
forward in time

Give atoms initial
positions, chose short At

Calculate Forces and
accelerationsa=F/m

Move atoms to new
positions

Move time forward
t=t+ At




Molecular dynamics

Interaction between molecules is usually described using the Lennard — Jones potential

Vij(r) = 4¢ [C"f @12 ¢ (96]

repulsive

attractive

Interaction energy (cm_1)

100
50 ¢
O oo s
0 Empirical
Lennard-Jones -
-100 F ! . | |
3.0 4.0 5.0 6.0 7.0

Interaction energy for two argon atoms

8.0



Molecular dynamics

= Breakup of a propane jet in nitrogen gas
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Heat transfer

Heat can be transferred from one place or body to another in three ways:
- Conduction
- Convection
- Radiation

These result in different boundary conditions



Heat transfer - conduction

= Consider an object with a cross-sectional area
A and thickness L, with faces maintained at Hot reservoir Cold reservoir
temperatures Ty and T .

= AQ is the energy (heat) transferred through the slab,
from the hot face to the cold face in time At

* The conduction rate P, 4 is:

where k is the thermal conductivity, specific to a given material



Thermal conductivities

Thermal conductivity k
(Jm1s1°C-1) at room temperature

Silver 420
Copper 380
Aluminum 200
Steel 40
Glass 0.84
Water 0.56
Wood 0.1

Air 0.023



Heat transfer - conduction

We will now consider heat conduction through an
object composed of two materials, with different T,
thicknesses and different thermal conductivities

Hot reservoir Cold reservoir
Tc

If the temperatures do not change with time, the
conduction rates through the two materials must
be equal

If T is the temperature of the interface between the
two materials, we can write:

koA(Ty = Ty) _ ks ATy = T)

cond = L, L,
After a bit of algebra we get:
For a single thermal link we had:
A(Ty —T¢) L . Ty — T
P.ong = ﬂ+ﬁ % is additive P.ong = kA T

ki Kk



Heat transfer - conduction

In the general case, we divide the object into infinitesimally small segments. We can then
rewrite the equation

AQ Ty —T¢
Pcond:A_t:kA 7

in the following form (Fourier’s law):
—— =g =—kVT  where g is the heat flux through surface with area A
For a given object with volume V, the conservation of energy says that the flux of energy

(heat) through the surface is equal to the change in thermal energy.

Thermal energy density is given by pc,,T where p denotes the density of the material, ¢, its
specific heat and T its temperature

Change in energy is equal to:

dE_dQ_dj -
dt _ de _dt) Pep



Heat transfer - conduction

Change in energy is equal to:

9 _L [ perav

—_— — C

dt _dt) Per

From energy conservation, this change in energy is equal to the integrated heat flux:

99 L[ prar = - G-as
_— pC —_ — qn
dt dt P S

We can use Gauss’ theorem on the right hand side:

j a-ﬁdszj (V- d)dv
S |74

This way we get from the expression for energy conservation:
d R
—j pc,TdV = — j (V-q)dV
dt v

as the volume is arbitrary, we get:

j aT+V gldV =0
PCp 57 q =



Heat transfer - conduction

As the volume of integration is arbitrary, we finally get:

oT .
PCyp 3¢ +V-qg=0
By inserting Fourier’s law ¢ = —kVT, we get:
oT
PCp o7 = V- (kVT)

This is valid for an anisotropic inhomogeneous medium where k could be a tensor (just like in
elasticity) while p, ¢, k arein general functions of position

In a homogeneous and isotropic material we can simplify this equation to:




Heat transfer — convection

Convection - energy transfer which occurs when a fluid (air, water etc.) comes in contact
with an object whose temperature is higher than that of the fluid

Heat is transported via the motion of the fluid
This motion can be forced (forced convection) or natural (due to heat expansion of the fluid)

=

Hotter water AVA

Convective flows in a house



Heat transfer — radiation

Radiation — heat exchange via electromagnetic waves, no medium is required

The rate P,.;4 at which an object emits energy via electromagnetic radiation depends on the
object’s surface area A and the temperature T of that area (in Kelvins) and is given by:

Prad = O'€AT4
where 0 = 5.67 - 1078W /m?K* is the Stefan-Boltzmann constant

¢ is the emissivity of the object and has a value between 0 (shiny) and 1 (black matte)

The rate P,; at which an object absorbs energy via thermal
radiation from its environment is:

— 4
p abs — UEATenv

Because an object can radiate energy to the environment and
also absorb it, the net rate of energy exchange due to radiation
(from the point of view of the object) is going to be:

Pret = Paps = Praa = GSA(T;"” B T4) Thermal scan of hands



Heat transfer — boundary conditions

1.

In order to complete the description of problems involving heat transfer, we must specify
initial and boundary conditions

For initial conditions, we must simply specify the temperature of the body at every pointin
space attimet = 0

T(x,y,2,0) = f(x,y,2)

Controlled temperature

This boundary condition (Dirichlet type) applies when a device has zones with a constant
temperature or if a large solid mass is in contact with the device. This large mass is then
supposed to remain at a constant temperature

T :TA
S

Symmetry plane

This boundary condition (von Neumann type) applies when the device geometry has one or
more planes of symmetry and when the heat sources are implemented with the same
symmetry i.e. no heat passes through these places. We can then impose on the symmetry

planes:

oT
kVT -7i| =k—=0
S on



Heat transfer — boundary conditions

3.

Insulated wall

This boundary condition (von Neumann type) applies for materials with low thermal
conductivity. The heat flow through such materials is negligible. We then have:

oT
kVT -7l =k—=0
S on

Heat transfer by convection

Here, the body is in contact with a fluid occupying a large volume. This could be a huge
liquid reservoir or the atmosphere. This fluid is assumed to have a temperature T4. The
corresponding boundary condition is then:

. oT
on

= —R(T - Ty)
S S

where h is the coefficient of convective exchange of the boundary. This value depends on
the nature of the fluid in the vicinity of the wall



Heat transfer — boundary conditions

5. Heat transfer by radiation

Objects emit electromagnetic radiation which is absorbed by surrounding objects.
This boundary condition is expressed using:

oT
— | == 4 _ T4
k 5 . eo(T*—Ty) .

Which mechanism is most important?

If the heat is carried away by a: then (on the microscale), we need to consider
solid conduction
fluid (liquid or gas) convection
there is no medium (vacuum) or the radiation

temperature difference is large
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